

ISO 6020/2 hydraulic cylinders with tie-rods are suitable for a wide range of industrial applications, when a compact, highly reliable and easy-to-maintain product is required, thanks to the configuration with four high-strength tie-rods, the use of the best materials and technical choices guided by the great experience gained through the years.

The overall dimensions, mounting configurations and working pressure of 160 bar comply with ISO 6020/2. The cylinder can be provided with reliable end-of-stroke cushioning, equipped with a quick restart system and adjustable to suit the needs and loads to be cushioned. Available in various sealing configurations to suit the desired operating conditions and performance.

Before delivery, each cylinder is tested in accordance with ISO 10100 and we record these results in our systems to ensure product quality and performance. They can be equipped with various types of switches to detect the piston at the end of the stroke or in intermediate positions, or sensors to detect it continuously along the entire stroke. In addition, the cylinder can be equipped with a CETOP plate for the installation of a control valve with ISO 4401 mounting surfaces.

Spare parts are easy to find and are always available at our warehouse, with rapid support service to deal with any urgency. For strokes over 2000 mm, it is recommended to choose ISO 6020/2 hydraulic cylinders with counterflanges (see page 26).



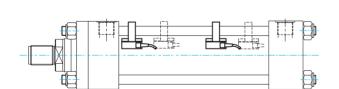
| Standard       |     | ISO 6020/2 - DIN             | l 24554 - tie-rods |
|----------------|-----|------------------------------|--------------------|
| Bore           | mm  | from 25                      | to 200             |
| Pressure       | bar | operational 160              | testing 240        |
| Maximum stroke | mm  | 40                           | 00                 |
| Fluid          |     | Mineral hy<br>Phospho<br>HFC | ric esters         |

#### **TIE-RODS CYLINDERS SERIES**

| CD | Bore from 25 to 100  |
|----|----------------------|
| DK | Bore from 125 to 200 |

MD Bore from 25 to 125

Bore from 40 to 100


Bore from 125 to 200



The CD and DK series hydraulic cylinders are the standard version of the ISO 6020/2 tie-rods cylinders. The technical features, dimensions, versions and options available are detailed on pages 7.

They are available in a wide variety of configurations, with rods in various materials, with CETOP plate for valve and with end-stroke switches integrated in the cylinder heads, as well as many other special options. In addition, for applications in aggressive environments in contact with substances that promote corrosion, they are available with a chemical nickel-plating surface treatment.

#### **TIE-RODS CYLINDERS SERIES WITH MAGNETIC SWITCHES**

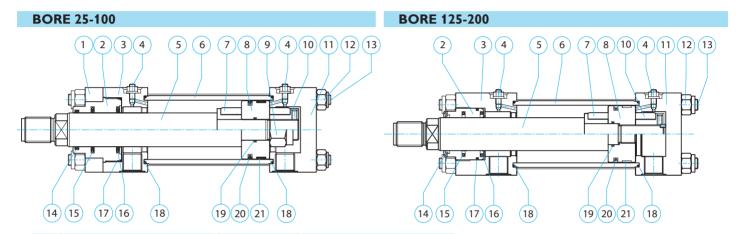


The MD series hydraulic cylinders have the same technical features, dimensions and available options as the standard CD and DK series, but are equipped with a magnetic piston and stainless-steel tube.

One or more magnetic switches can be positioned along the tube, fixed to the tie-rods, to detect the passage of the piston in correspondence with the SR or SH switch.

Special programmable sensors are available on request (see page 20).

#### TIE-RODS SERVOCYLINDERS SERIES WITH POSITION TRANSDUCER


The TD and TK series hydraulic servocylinders have the same technical features, dimensions and available options as the CD and DK series, but are equipped with a magnetostrictive linear position transducer (see page 22) for precise and continuous detection of the piston at any point in the servocylinder stroke.

The external parts of the position transducer are protected against accidental impact during transport, installation and operation by a removable steel cover.

## **AVAILABLE SEALS**

|            |                 |                 | Performances |            |             |                  | Fluid             |              |
|------------|-----------------|-----------------|--------------|------------|-------------|------------------|-------------------|--------------|
| Seals code | High<br>sealing | Low<br>friction | Max<br>speed | Tem<br>Min | p °C<br>Max | Hydraulic<br>oil | Phosphoric esters | HFC-Fluid    |
| s          | $\checkmark$    |                 | 0.5 m/s      | -20        | +80         | $\checkmark$     |                   |              |
| L          |                 | $\checkmark$    | 1 m/s        | -20        | +80         | $\checkmark$     |                   |              |
| н          |                 | $\checkmark$    | 1 m/s        | -20        | +150        | $\checkmark$     | $\checkmark$      |              |
| G          |                 | $\checkmark$    | 1 m/s        | -20        | +80         |                  |                   | $\checkmark$ |

For speeds and temperatures exceeding the indicated limits, please contact our technical department.



|    | Component                   | Material           | Features                     |
|----|-----------------------------|--------------------|------------------------------|
| 1  | Closing flange              | Steel              | Burnished                    |
| 2  | Guide bushing               | Bronze             |                              |
| 3  | Front head                  | Steel              | Burnished                    |
| 4  | Cushioning adj. + air bleed | Steel              |                              |
| 5  | Piston rod                  | Chromeplated steel | Cr 25 µm ISO f7 - Ra 0.20 µm |
| 6  | Cylinder body               | Steel              | Honed H8 - Ra 0.40 µm        |
| 7  | Front cushioning            | Hardened steel     |                              |
| 8  | Piston                      | Steel              |                              |
| 9  | Rod self-locking nut        | Steel              |                              |
| 10 | Rear cushioning             | Hardened steel     |                              |
| 11 | Rear head                   | Steel              | Burnished                    |
| 12 | Tie-rod self-locking nut    | Steel              |                              |
| 13 | Tie-rod                     | Alloy steel        | Threaded rolled              |

The cylinders are equipped with a bronze guide bushing with wiper and double seal with high seal or low-friction.

The tie-rods are made of high-strength material and the thread is obtained by cold-rolling, to increase fatigue strength.

The original floating ring cushioning system guarantees perfect centring and performs the function of rapid opening for quick restart of the cylinder. Made of hardened steel guarantees a long service life, thanks to the steel housing of the cylinder head.

The screw adjustment system allows a precise adjustment of the cushioning effect and at the same time bleeding the air (see page 9).

|    | Component              | Groove     |            | Mat        | erial         |               |
|----|------------------------|------------|------------|------------|---------------|---------------|
|    | Component              | Gloove     | S          | L          | Н             | G             |
| 14 | Rod wiper              |            | NBR + PTFE | NBR + PTFE | Viton® + PTFE | NBR + PTFE CG |
| 15 | First rod seal         | ISO 7425/2 | NBR + PTFE | NBR + PTFE | Viton® + PTFE | NBR + PTFE CG |
| 16 | Second rod seal        | ISO 7425/2 | PU         | NBR + PTFE | Viton® + PTFE | NBR + PTFE CG |
| 17 | Head / bushing sealing |            | NBR + PTFE | NBR + PTFE | Viton® + PTFE | NBR + PTFE    |
| 18 | Tube seal              |            | NBR        | NBR        | Viton®        | NBR           |
| 19 | Internal piston seal   |            | NBR        | NBR        | Viton®        | NBR           |
| 20 | External piston seal   | ISO 7425/1 | NBR + PU   | NBR + PTFE | Viton® + PTFE | NBR + PTFE CG |
| 21 | Piston guide           |            | Resin      | Resin      | Resin         | Resin         |

#### SIZING AND FORCES

| Dime | ension   | Pisto           | n area          | Force at | 100 bar    | Force at | 160 bar            | Tie-rods<br>tightening torque |
|------|----------|-----------------|-----------------|----------|------------|----------|--------------------|-------------------------------|
| Bore | Rod      | push            | pull            | push     | pull       | push     | pull               | ugittering tor que            |
| mm   | mm       | cm <sup>2</sup> | cm <sup>2</sup> | daN      | daN        | daN      | daN                | Nm                            |
| 25   | 12<br>18 | 4.9             | 3.8<br>2.4      | 491      | 378<br>236 | 785      | 604<br>378         | 5                             |
|      | 14       |                 | 6.5             |          | 650        |          | 1040               |                               |
| 32   | 18       | 8.0             | 5.5             | 804      | 550        | 1287     | 880                | 9                             |
| 32   | 22       | 0.0             | 4.2             | 001      | 424        | 1207     | 679                | ,                             |
|      | 18       |                 | 10.0            |          | 1002       |          | 1603               |                               |
| 40   | 22       | 12.6            | 8.8             | 1257     | 877        | 2011     | 1402               | 20                            |
|      | 28       |                 | 6.4             |          | 641        |          | 1025               |                               |
|      | 22       |                 | 15.8            |          | 1583       |          | 2533               |                               |
| 50   | 28       | 19.6            | 13.5            | 1963     | 1348       | 3142     | 2156               | 70                            |
|      | 36       |                 | 9.5             |          | 946        |          | 1513               |                               |
|      | 28       |                 | 25.0            |          | 2501       |          | 4002               |                               |
| 63   | 36       | 31.2            | 21.0            | 3117     | 2099       | 4988     | 3359               | 70                            |
|      | 45       |                 | 15.3            | 3117     | 1527       |          | 2443               |                               |
|      | 36       |                 | 40.1            |          | 4009       |          | 6414               |                               |
| 80   | 45       | 50.3            | 34.4            | 5027     | 3436       | 8042     | 5498               | 160                           |
|      | 56       |                 | 25.6            |          | 2564       |          | 4102               |                               |
|      | 45       |                 | 62.6            |          | 6264       |          | 10022              |                               |
| 100  | 56       | 78.5            | 53.9            | 7854     | 5391       | 12566    | 8626               | 160                           |
|      | 70       |                 | 40.1            |          | 4006       |          | 6409               |                               |
|      | 56       |                 | 98.1            |          | 9809       |          | 15694              |                               |
| 125  | 70       | 122.7           | 84.2            | 12272    | 8423       | 19635    | 13 <del>4</del> 77 | 460                           |
|      | 90       |                 | 59.1            |          | 5910       |          | 9456               |                               |
|      | 70       |                 | 162.6           |          | 16258      |          | 26012              |                               |
| 160  | 90       | 201.1           | 137.4           | 20106    | 13744      | 32170    | 21991              | 820                           |
|      | 110      |                 | 106.0           |          | 10603      |          | 16965              |                               |
|      | 90       |                 | 250.5           |          | 25054      |          | 40087              |                               |
| 200  | 200 110  | 314.2           | 219.1           | 31416    | 21913      | 50265    | 35060              | 1150                          |
|      | 140      |                 | 160.2           |          | 16022      |          | 25635              |                               |

## **STROKE**

During testing, the cylinder stroke is checked, assuring compliance with the tolerance of 0/+2 mm as per ISO 8131. For space requirements of the cylinder components or switches, the stroke cannot be less than a minimum value in some circumstances. This problem can be overcome by inserting a spacer.

|         |            | Bore                 | 25 | 32 | 40 | 50 | 63 | 80 | 100 | 125 | 160 | 200 |
|---------|------------|----------------------|----|----|----|----|----|----|-----|-----|-----|-----|
|         | CD/DK (mm) | Mounting H (ISO MT4) | 5  | 10 | 10 | 15 | 25 | 30 | 40  | 50  | 65  | 75  |
| Minimum | CD/DK (mm) | Others               | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   |
| stroke  | MD (mana)  | Mounting H (ISO MT4) | 47 | 55 | 55 | 62 | 70 | 75 | 84  | 95  | -   | -   |
|         | MD (mm)    | Others               | 25 | 28 | 24 | 22 | 20 | 15 | 14  | 5   | -   | -   |

## **OPERATIONAL LIFE-TIME**

The cylinders are manufactured from high-quality materials and according to design guidelines validated by many years of experience with these products. Under ideal conditions, the cylinders are capable of working for millions of cycles requiring only regular basic maintenance and replacement of wear parts. The real application situations can subject cylinders to conditions that reduce their service life and would therefore be preferable to avoid.

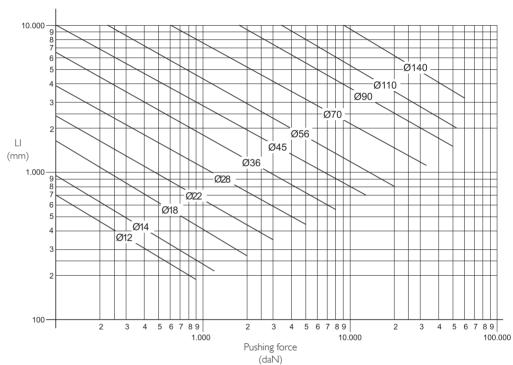
The most frequent are:

- radial loads, generated by external forces or misalignments in fixing to machinery
- end-stroke impacts and external impulsive forces
- pressure peaks and water hammers;
- contaminated hydraulic fluid;
- over-temperatures, caused either by the environment or internal causes such as frequent cycles with short strokes, which prevent sufficient oil change.

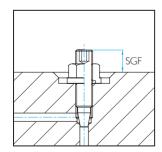
Our technical department will be able to advise you on how best to prevent or reduce problems.

#### **BUCKLING VERIFICATION**

When the cylinder is pushing, it can be subject to buckling instability, depending on mounting, stroke and pushing force.


The graph illustrates the boundary working conditions for each rod. Stay below for optimal operation. The mounting of the cylinder determines the stroke factor FC. Multiplying the cylinder stroke CO by FC gives the ideal length LI. The value of LI, read on the vertical axis, meets the line corresponding to the diameter of the rod to be checked, identifying on the horizontal axis the maximum possible push.

If the actual thrust does not exceed this limit value, the verification is passed.


Spacers and rod extensions must be added to the stroke to obtain the CO value to be multiplied by FC.

# **MOUNTING** FC X (MX5) A (ME5) R (MX3) 2 Q (MX1) 1.5 B (ME6) S (MX2) T (MX6) 0.7 E (MS2) G (MT1) H (MT4) C (MP3) D (MP5) L (MT2)

#### **ROD SELECTION CHART**



## **CUSHIONING ADJUSTMENT AND AIR BLEEDING**

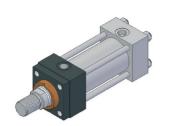


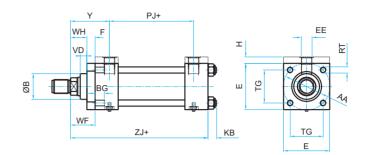
M (MP1)

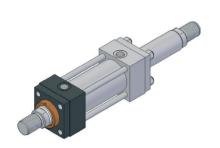
All the cushioned cylinders are equipped with a screw that allows the cushioning adjustment.

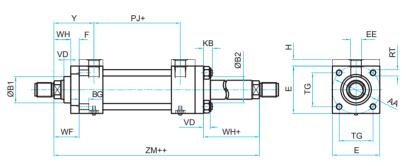
Slightly loosen the Seal-Lock® sealing nut, adjust the screw and tighten carefully.

The cushioning adjustment unit can also be used as an air bleeder by loosening the nut until the air has escaped.


On cylinders with cushioning, if the stroke is shorter than the cushioning length, the cylinder is always cushioned.

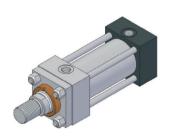

| Bore              |                 | 25  | 32  | 40  | 50  | 63   | 80   | 100 | 125 | 160 | 200 |
|-------------------|-----------------|-----|-----|-----|-----|------|------|-----|-----|-----|-----|
| Cushioning lenght | mm              | 12  | 14  | 23  | 21  | 21   | 28   | 28  | 26  | 30  | 44  |
| Cushioning area   | cm <sup>2</sup> | 1.8 | 3.5 | 5.5 | 8.3 | 13.8 | 23.8 | 38  | 56  | 99  | 151 |
| SGF               | mm              | 8   | 8   | 5   | 5   | 2    | 0    | 0   | 0   | 0   | 0   |

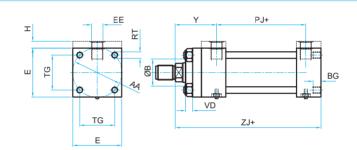




## **ISO MX5 - FRONT THREADED HOLES**



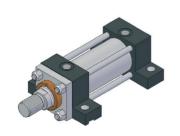


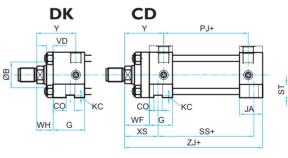


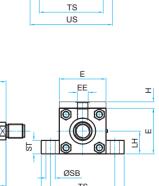






# **ISO MX6 - REAR THREADED HOLES**


Т

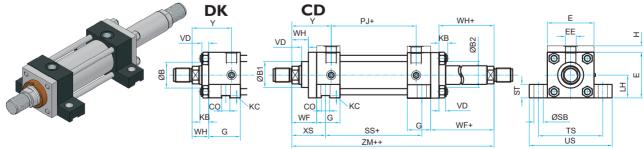



# **ISO MS2 - FEET**

Е



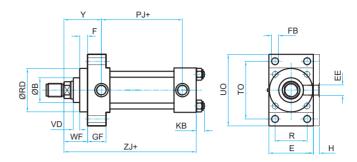


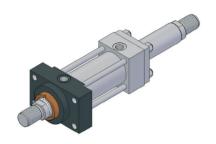


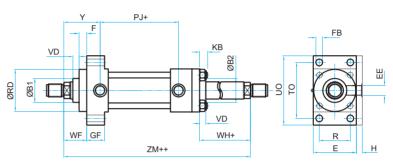

ΕE

ØSB

Ξ

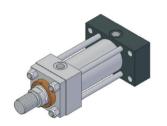


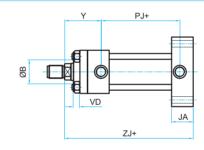



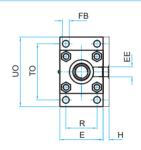


# **ISO ME5 - FRONT FLANGE**

A



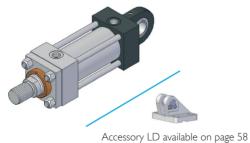


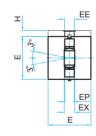



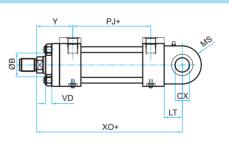




# **ISO ME6 - REAR FLANGE**

В



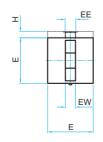



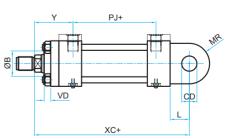




# **ISO MP5 - BALL JOINTED EYE**

D



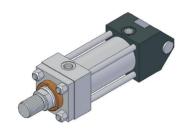


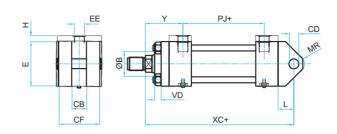




ISO MP3 - MALE CLEVIS

С



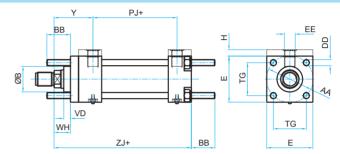


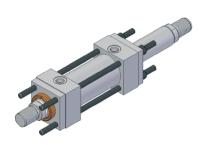



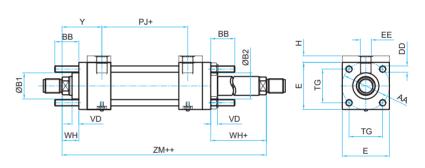



# **ISO MP1 - FEMALE CLEVIS**

M



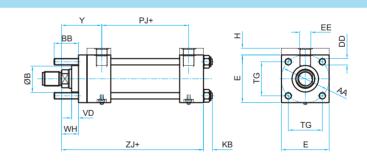





# **ISO MX1 - FRONT AND REAR EXTENDED TIE-RODS**

Q



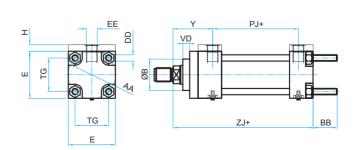







## **ISO MX3 - FRONT EXTENDED TIE-RODS**

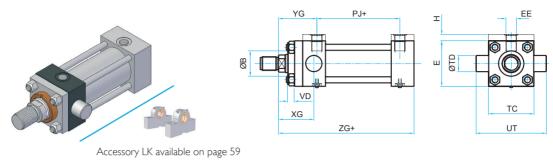
R

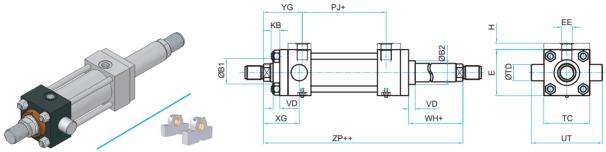





## **ISO MX2 - REAR EXTENDED TIE-RODS**

S



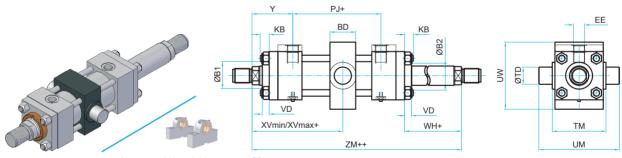



## **ISO MT1 - FRONT TRUNNIONS**

G



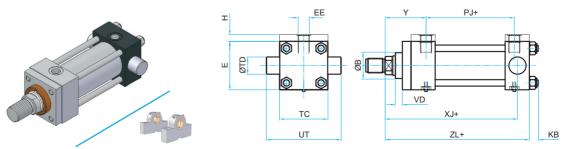




Accessory LK available on page 59

# **ISO MT4 - INTERMEDIATE TRUNNIONS**






Accessory LK available on page 59



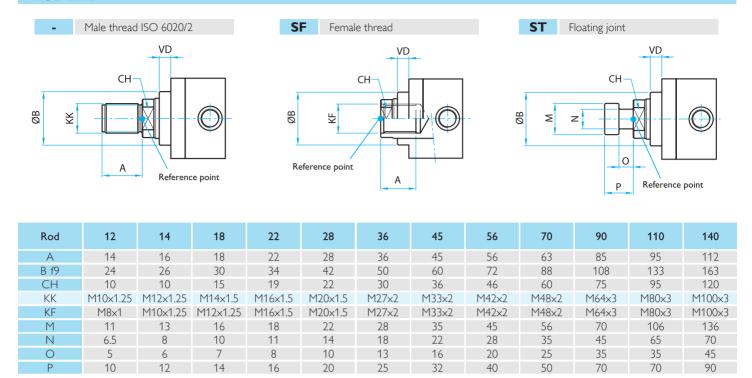
Accessory LK available on page 59

## **ISO MT2 - REAR TRUNNIONS**

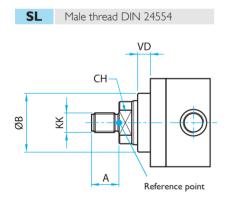




Accessory LK available on page 59




| Bore          | 25           |    |     | 32            |     |     | 40            |    |            | 50                           |                |      | 63               |            |     | 80               |     |     | 00            |                 |     | 125        |      |            | 160           |      |     | 200          |     |
|---------------|--------------|----|-----|---------------|-----|-----|---------------|----|------------|------------------------------|----------------|------|------------------|------------|-----|------------------|-----|-----|---------------|-----------------|-----|------------|------|------------|---------------|------|-----|--------------|-----|
|               |              |    |     |               |     |     |               |    |            |                              |                |      |                  |            |     |                  |     |     |               |                 |     |            | T T  |            |               | П    |     |              |     |
| Rod           |              | 18 | 14  | 18            | 22  | 18  | 22            | 28 | 22         | 28                           | 36             | 28   | 36               | 45         | 36  | 45               | 56  |     | 56            | 70              | 56  | 70         | 90   | 70         |               | 110  |     | 110          |     |
| B f9          | _            | 30 | 26  | 30            | 34  | 30  | 34            | 42 | 34         |                              | 50             | 42   | 50               | 60         | 50  |                  | 72  |     | 72            | 88              | /2  |            | 108  | 88         |               | 133  | 108 |              | 163 |
| AA            | 40           |    |     | 47            |     |     | 59            |    |            | 74                           |                |      | 91               |            |     | 117              |     |     | 37            |                 |     | 178        |      |            | 219           |      |     | 269          |     |
| BB            | 19           |    |     | 24            |     |     | 35            |    |            | 46                           |                |      | 46               |            |     | 59               |     |     | 59            |                 |     | 81         |      |            | 92            |      |     | 115          |     |
| BD            | 20           |    |     | 25            |     |     | 29            |    |            | 38                           |                |      | 48               |            |     | 58               |     |     | 68            |                 |     | 88         |      |            | 108           |      |     | 125          |     |
| BG            | 12           |    |     | 15            |     |     | 16            |    |            | 18                           |                |      | 18               |            |     | 24               |     |     | 24            |                 |     | 30         |      |            | 35            |      |     | 40           |     |
| СВ            | 16(*)        |    |     | 16            |     |     | 20            |    |            | 30                           |                |      | 30               |            |     | 40               |     |     | 50            |                 |     | 64(*       | )    | 8          | 80(*          | )    |     | 80           |     |
| CD H9         | 10           |    |     | 12            |     |     | 14            |    |            | 20                           |                |      | 20               |            |     | 28               |     |     | 36            |                 |     | 45         |      |            | 56            |      |     | 70           |     |
| CF            | 40           |    |     | 45            |     |     | 60            |    |            | 74                           |                |      | 90               |            |     | 110              |     | ,   | 30            |                 |     | 164        |      |            | 200           |      |     | 240          |     |
| CO H8         | -            |    |     | -             |     |     | 12            |    |            | 12                           |                |      | 16               |            |     | 16               |     |     | 16            |                 |     | 20         |      |            | 30            |      |     | 40           |     |
| CX            | 12 - 0.00    | 10 | 16  | - 0.0         | ıΩ0 | 20  | - 0.0         | 12 | 25         | - 0.0                        | 12             | 30   | 0 - 0.01         | 12         | 40  | 0 - 0.0          | 12  | 50  | 0.0           | 12              | 60  | - 0.0      | )1 E | 80         | - 0.0         | 74 E | 100 | 0.01         | 20  |
| DD            | M5×0.8       |    |     | 0.0<br>146×1  |     |     | - 0.0<br>18×1 | 12 |            | 2×1.                         |                |      | 2×1.2            |            |     | 16×1             |     |     | 6x1           |                 |     | 22×′       |      |            | - 0.0<br>×127 |      |     | 130×2        |     |
| E max         | 40           | ,  | - ' | 45            |     |     | 60            |    | 1 11       | 75                           | 23             | 1 11 | 90               | 23         |     | 115              | .5  |     | 30            | .5              |     | 165        |      |            | 200           |      |     | 245          | _   |
| EE (page 16)  | G 1/4''      |    |     | тэ<br>3 1/4   | ,,  |     | 3/8           | ,, |            | 73<br>3 1/2                  | ,              |      | 70<br>5 1/2'     | ,          |     | 3/4'             | ,,  |     | 3/4'          | ,               |     | G 1'       |      |            | G 1'          |      |     | 1 1/4        | 4'' |
| FP (page 16)  | 9            |    | (   | דיו כ<br>12   |     | C   | 14            |    |            | 18                           |                | 0    | 20               |            | _   | 24               |     |     | 30            |                 |     | 38         |      |            | 47            |      | G   | 58           | Т   |
| EW h14        | 12           |    |     | 16            |     |     | 20            |    |            | 30                           |                |      | 30               |            |     | 40               |     |     | 50<br>50      |                 |     | 60         |      |            | 70            |      |     | 80           |     |
|               | 12           |    |     |               |     | 4.4 |               |    | ~ ~        |                              |                |      |                  |            | ~ ~ |                  |     |     |               |                 |     |            |      |            |               |      | 7.0 |              |     |
| EX            | 10 - 0.12    |    | 14  | 0<br>- 0.1    | 2   | 16  | 0 - 0.1       | 2  | 20         | 0 - 0.1                      | 2              | 22   | 0 - 0.12         | )          | 28  | - 0,12           | 2   |     | 0<br>- 0.12   | 2               | 44  | 0<br>- 0.1 | 15   | 55         | 0<br>- 0.1    | 15   | 70  | - 0.20       | 0   |
| F max         | 10           |    |     | 10            |     |     | 10            |    |            | 16                           |                |      | 16               |            |     | 20               |     |     | 22            |                 |     | 22         |      |            | 25            |      |     | 25           |     |
| FB H13        | 5.5          |    |     | 6.6           |     |     | 11            |    |            | 14                           |                |      | 14               |            |     | 18               |     |     | 18            |                 |     | 22         |      |            | 26            |      |     | 33           |     |
| G             | 32           |    |     | 35.5          |     |     | 46            |    |            | 45                           |                |      | 45               |            |     | 52               |     |     | 55            |                 |     | 87         |      |            | 95            |      |     | 117          |     |
| GF            | 25           |    |     | 25            |     |     | 38            |    |            | 38                           |                |      | 38               |            |     | 45               |     |     | 45            |                 |     | 58         |      |            | 58            |      |     | 76           |     |
| Н             | 5            |    |     | 5             |     |     | -             |    |            | -                            |                |      | -                |            |     | -                |     |     | -             |                 |     | -          |      |            | -             |      |     | -            |     |
| JA            | 32           |    |     | 35.5          |     |     | 46            |    |            | 45                           |                |      | 45               |            |     | 52               |     |     | 55            |                 |     | 65         |      |            | 70            |      |     | 92           |     |
| KB            | 7            |    |     | 10            |     |     | 13            |    |            | 17                           |                |      | 17               |            |     | 23               |     |     | 23            |                 |     | 30         |      |            | 35            |      |     | 37           |     |
| KC            | -            |    |     | -             |     |     | 4             |    |            | 4.5                          |                |      | 4.5              |            |     | 5                |     |     | 6             |                 |     | 6          |      |            | 8             |      |     | 8            |     |
| L min         | 13           |    |     | 19            |     |     | 19            |    |            | 32                           |                |      | 32               |            |     | 39               |     |     | 54            |                 |     | 57         |      |            | 63            |      |     | 82           |     |
| LH h10        | 19           |    |     | 22            |     |     | 31            |    |            | 37                           |                |      | 44               |            |     | 57               |     |     | 63            |                 |     | 82         |      |            | 101           |      |     | 122          |     |
| LT min        | 16           |    |     | 20            |     |     | 25            |    |            | 31                           |                |      | 38               |            |     | 48               |     |     | 58            |                 |     | 72         |      |            | 92            |      |     | 116          |     |
| MR max        | 12           |    |     | 17            |     |     | 17            |    |            | 29                           |                |      | 29               |            |     | 34               |     |     | 50            |                 |     | 53         |      |            | 59            |      |     | 78           |     |
| MS max        | 20           |    |     | 22.5          |     |     | 29            |    |            | 33                           |                |      | 40               |            |     | 50               |     |     | 62            |                 |     | 80         |      |            | 100           |      |     | 120          |     |
| PI            | 49+ (*       | )  | 4   | 7+ (*         | *)  | 58  | 3+ (*         | ⊬) | 62         | 2+ (*                        | <sup>(*)</sup> | 64   | 1+ (*            | )          | 7   | 7+ (*            | ÷)  | 78  | + (*          | •)              |     | 117+       | H    |            | 130-          | +    | -   | 165+         |     |
| Ř             | 27           |    |     | 33            | ,   |     | 41            | ,  |            | 52                           | _              |      | 65               | _          |     | 83               | ,   |     | 97            | /               |     | 126        |      |            | 155           |      |     | 190          |     |
| RD f8         | 38           |    |     | 42            |     |     | 62            |    |            | 74                           |                | 8    | 8 (**            | )          | 10  | 05 (**           | *)  |     | 5 (**         | <del>(</del> *) | 15  | 50 (*      |      | 17         | 70 (*         |      |     | 0 (**        | *)  |
| RT            | M5           |    |     | M6            |     |     | M8            |    |            | M12                          |                |      | M12              |            |     | M16              | /   |     | 116           | _               |     | M22        |      |            | M27           |      |     | M30          |     |
| SB H13        | 6.5          |    |     | 9             |     |     | 11            |    |            | 14                           |                |      | 18               |            |     | 18               |     |     | 26            |                 |     | 26         |      |            | 33            |      |     | 39           |     |
| SS            | 73+          |    |     | 73+           |     |     | 98+           |    |            | 92+                          |                |      | 86+              |            |     | 105+             |     |     | )2+           |                 |     | 131+       | +    |            | 130-          | +    | ,   | 172+         |     |
| ST            | 8.5          |    |     | 12.5          |     |     | 12.5          |    |            | 19                           |                |      | 26               |            |     | 26               |     |     | 32            |                 |     | 32         |      |            | 38            |      |     | 44           |     |
| TC            | 38           |    |     | 44            |     |     | 63            |    |            | 76                           |                |      | 89               |            |     | 114              |     |     | 27            |                 |     | 165        |      |            | 203           |      |     | 241          |     |
| TD f8         | 12           |    |     | 16            |     |     | 20            |    |            | 25                           |                |      | 32               |            |     | 40               |     |     | 50            |                 |     | 63         |      |            | 80            |      |     | 100          |     |
| TG            | 28.3         |    |     | 33.2          |     |     | 41.7          |    |            | 52.3                         |                |      | 64.3             |            |     | 82.7             |     |     | 6.9           |                 |     | 125.9      | 9    |            | 154.9         | 9    |     | 190.2        |     |
| TM            | 48           |    |     | 55            |     |     | 76            |    |            | 89                           |                |      | 100              |            |     | 127              |     |     | 40            |                 |     | 178        |      |            | 215           |      |     | 279          |     |
| TO            | 51           |    |     | 58            |     |     | 87            |    |            | 105                          |                |      | 117              |            |     | 149              |     |     | 62            |                 |     | 208        |      |            | 253           |      |     | 300          |     |
| TS            | 54           |    |     | 63            |     |     | 83            |    |            | 102                          |                |      | 124              |            |     | 149              |     |     | 72            |                 |     | 210        |      |            | 260           |      |     | 311          |     |
| UM            | 68           |    |     | 79            |     |     | 108           |    |            | 129                          |                |      | 150              |            |     | 191              |     |     | 220           |                 |     | 278        |      |            | 341           |      |     | 439          |     |
| UO max        | 65           |    |     | 70            |     |     | 110           |    |            | 130                          |                |      | 145              |            |     | 180              |     |     | 200           |                 |     | 250        |      |            | 300           |      |     | 360          |     |
| US            | 72           |    |     | 84            |     |     | 103           |    |            | 127                          |                |      | 161              |            |     | 186              |     |     | 216           |                 |     | 254        |      |            | 318           |      |     | 381          |     |
| UT            | 58           |    |     | 68            |     |     | 95            |    |            | 116                          |                |      | 139              |            |     | 178              |     |     | 207           |                 |     | 265        |      |            | 329           |      |     | 401          |     |
| UW            | 45           |    |     | 50            |     |     | 70            |    |            | 90                           |                |      | 100              |            |     | 130              |     |     | 40            |                 |     | 180        |      |            | 215           |      |     | 300          |     |
| VD            | 6            |    |     | 12            |     |     | 12            |    |            | 9                            |                |      | 13               |            |     | 9                |     |     | 10            |                 | 9   |            | 10   |            |               |      |     | 7            | 7   |
| WF            | 25           |    |     | 35            |     |     | 35            |    |            | 41                           |                |      | 48               |            |     | 51               |     |     | 57            |                 | ,   | 57         | 10   |            | 57            | ,    | , 5 | 57           | ,   |
| WH            | 15           |    |     | 25            |     |     | 25            |    |            | 25                           |                |      | 32               |            |     | 31               |     |     | 35            |                 |     | 35         |      |            | 32            |      |     | 32           |     |
| XC            | 127+         |    | ,   | 25<br>147+    |     |     | 23<br>172+    |    | ,          | 23<br>191+                   |                | -    | 200+             |            |     | 229+             |     |     | 55<br>57+     |                 |     | 289+       | +    |            | 308-          | +    | -   | 32<br>381+   |     |
| XG            | 44           |    |     | 54            |     |     | 57            |    |            | 64                           |                |      | 70               |            |     | 76               |     |     | 71            |                 |     | 75         |      |            | 75            |      | ,   | 85           |     |
| XI            | 95+ (*       | )  | 10  | )9+ (         | ·*\ | 13  | 1+ (          | *) | 12         | 6+ (                         | *)             | 14   | ·6+ (*           | <b>k</b> ) | 16  | 55+ (†           | *)  |     | /             | *)              | 21  | 4+         | (*)  | วา         | 27+           | (*)  | 27  | 1+ (         | *\  |
| XO            | 130+         | ,  |     | 148+          |     |     | 178+          |    |            |                              |                |      | 206+             |            |     | 238+             |     |     | ' (<br>61+    |                 |     | 304-       |      |            | 337-          |      |     | 115+         |     |
| XS            | 33           |    |     | 45            |     |     | 45            |    | 190+<br>54 |                              |                | 2    | 65               |            |     | 68               |     |     | 79            |                 |     | 79         |      |            | 86            |      |     | 92           |     |
| XV min/max    | 68 / 71·     | +  | Q/  | +3<br>1 / 79  | )+  |     | 73<br>792     | +  |            |                              |                | 110  | 65<br>8 / 98     | \<br>+     | 122 | 8 / 10           | 18+ | 147 |               | 3+              | 14- | 7 / 1:     | 77+  | 100        | 00<br>2 / 1:  | 20+  | 212 | 92<br>: / 14 | 4+  |
| Y min/max     | 45 (*)       |    |     | 58 (*         |     |     | 7 92<br>5 (*) |    |            | 5 / 9 <del>'</del><br>59 (*) |                |      | 3 / 98<br>16 (*) |            |     | 3 / 10<br>32 (*) |     |     | / II<br>  (*) |                 | 167 | 86         |      | 102        | 27 1.<br>86   | ZUT  | 212 | 98           | TT  |
| YG            | 45 (*)       |    |     |               |     |     |               |    |            |                              |                |      |                  |            |     | 32 (*)<br>32 (*) |     |     |               |                 |     | 86         |      |            | 86            |      |     | 98           |     |
| ZG            |              |    |     | 58 (*<br>1204 |     |     | 5 (*)         |    |            | 69 (*)                       |                |      | '6 (*)<br>168+   |            |     |                  |     |     | ) (*)<br>21 ± |                 |     |            |      |            |               | L    | -   | 98<br>299+   |     |
|               | 114+<br>114+ |    |     | 128+          |     |     | 153+          |    |            | 159+                         |                |      |                  |            |     | 190+             |     |     | 91+           |                 |     | 232+       |      |            | 245-          |      |     |              |     |
| ZJ            | 114+         |    |     | 128+          |     |     | 153+          |    |            | 159+                         |                |      | 168+             |            |     | 190+             |     |     | )3+           |                 |     | 232+       |      |            | 245-          |      |     | 299+         |     |
| ZL            | 114+         |    |     | 128+          |     |     | 153+          |    |            | 159+                         |                |      | 168+             |            |     | 190+             |     |     | )3+           |                 |     | 254+       |      |            | 270-          |      |     | 324+         |     |
| ZM<br>ZP      | 139++        |    |     | 63+           |     |     | 88+-          |    |            | 00+-                         |                |      | 16++             |            |     | 41++             |     |     | 0+-           |                 |     | 89+        |      |            | 02+           |      |     | 56+-         |     |
| (*) Dimension | 139++        |    |     | 63+-          |     | 10  | 88+-          | i. | 2          | 00+-                         |                | 2    | 16++             |            |     | 41++             |     | 24  | 8+-           |                 | 2   | 89+        |      | ک<br>= add | 02+           |      |     | 56+-         | 1   |

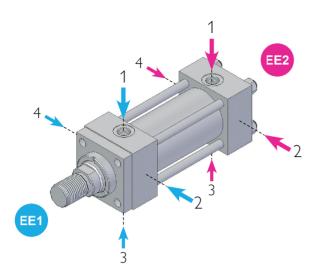

<sup>(\*)</sup> Dimension not compliant with ISO 6020/2
(\*\*) Unified RD dimension, with reference to the bigger rod in compliance with ISO 6020/2. Smaller RD available on request.

<sup>+ =</sup> add the stroke ++ = add twice the stroke

## **ROD END**



For the ISO 6020/2 standard male rod end, ball-joint or clevis pin ends are available on page 56. Different threads, lengths and rod extensions are available on request.




| Bore | 2    | 5     |    | 32    |     |    | 40   |    |    | 50   |    |    | 63   |    |    | 80   |    |    | 100  |    |    | 125  |     |    | 160  |     |     | 200   |     |
|------|------|-------|----|-------|-----|----|------|----|----|------|----|----|------|----|----|------|----|----|------|----|----|------|-----|----|------|-----|-----|-------|-----|
| Rod  | 12   | 18    | 14 | 18    | 22  | 18 | 22   | 28 | 22 | 28   | 36 | 28 | 36   | 45 | 36 | 45   | 56 | 45 | 56   | 70 | 56 | 70   | 90  | 70 | 90   | 110 | 90  | 110   | 140 |
| Α    | 1    | 4     |    | 16    |     |    | 18   |    |    | 22   |    |    | 28   |    |    | 36   |    |    | 45   |    |    | 56   |     |    | 63   |     |     | 85    |     |
| B f9 | 24   | 30    | 26 | 30    | 34  | 30 | 34   | 42 | 34 | 42   | 50 | 42 | 50   | 60 | 50 | 60   | 72 | 60 | 72   | 88 | 72 | 88   | 108 | 88 | 108  | 133 | 108 | 133   | 163 |
| CH   | 10   | 15    | 12 | 15    | 19  | 15 | 19   | 22 | 19 | 22   | 30 | 22 | 30   | 36 | 30 | 36   | 46 | 36 | 46   | 60 | 46 | 60   | 75  | 60 | 75   | 95  | 75  | 95    | 120 |
| KK   | M10> | <1.25 | M  | 12×1. | .25 | М  | 14×1 | .5 | М  | 16×1 | .5 | M  | 20×1 | .5 | 1  | 127× | 2  | 1  | 433x | 2  | P  | 142× | 2   |    | 148× | 2   | ~   | 164×. | 3   |
| VD   | 6    | ó     |    | 12    |     |    | 12   |    |    | 9    |    |    | 13   |    |    | 9    |    |    | 10   |    | 9  | 10   | 10  | 10 | 10   | 7   | 10  | 7     | 7   |

For the SL rod end with male thread DIN 24554, ball-joint or clevis pin ends are available on page 56.



#### **OIL PORTS**



The standard configuration has the oil port in position 1 and the cushioning adjustment or air bleed on position 3, except for the fixing type E where they are in position 2.

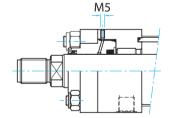
|      |       | ISO 1179  | 9-1 (GAS) | SAE      | 3000     |
|------|-------|-----------|-----------|----------|----------|
| Bore | Side  | Standard  | Oversize  | Standard | Oversize |
| 25   | Front | G 1/4''   | -         | -        | -        |
| 25   | Rear  | G 1/4''   | G 3/8''   | -        | -        |
| 32   | Front | G 1/4''   | -         | -        | -        |
| 32   | Rear  | G 1/4''   | G 3/8''   | -        | -        |
| 40   | Front | G 3/8''   | -         | -        | -        |
| TU   | Rear  | G 3/8''   | G 1/2''   | -        | -        |
| 50   | Front | G 1/2''   | -         | -        | -        |
| 30   | Rear  | G 1/2''   | G 3/4''   | -        | -        |
| 63   | Front | G 1/2''   | -         | -        | -        |
| 03   | Rear  | G 1/2''   | G 3/4''   | -        | -        |
| 80   | Front | G 3/4''   | -         | 3/4''    | 1''      |
| 80   | Rear  | G 3/4''   | G 1"      | 3/4''    | 1"       |
| 100  | Front | G 3/4''   | -         | 3/4''    | 1''      |
| 100  | Rear  | G 3/4''   | G 1''     | 3/4''    | 1''      |
| 125  | Front | G 1"      | G 1 1/4'' | 1''      | 1 1/4''  |
| 123  | Rear  | G 1"      | G 1 1/4'' | 1''      | 1 1/4''  |
| 160  | Front | G 1''     | G 1 1/4'' | 1''      | 1 1/4''  |
| 100  | Rear  | G 1''     | G 1 1/4'' | 1''      | 1 1/4''  |
| 200  | Front | G 1 1/4'' | G 1 1/2"  | 1 1/4''  | 1 1/2"   |
| 200  | Rear  | G 1 1/4'' | G 1 1/2"  | 1 1/4''  | 1 1/2"   |

## **ROD MATERIAL**

| -   | CK45 chromeplated steel                  |  |  |
|-----|------------------------------------------|--|--|
| RRX | Chromeplated Stainless steel             |  |  |
| RRB | Hardened and tempered chromeplated steel |  |  |
| RRK | Nikrom steel                             |  |  |
| RRH | Hardened chromeplated steel              |  |  |
|     |                                          |  |  |

The cylinder rod is made of high-quality chrome-plated ground steel to reduce seal wear and achieve the best sealing performance over time.

The standard version is made of CK45 steel.


For special requirements regarding resistance to corrosion, mechanical stress and wear, stainless steel, Nikrom-coated, hardened and tempered steel or hardened steel rods are available.

## **BUSHING DRAIN**

Stroke longer than 2000 mm and high-speed movement can generate a build-up of fluid between the wiper and the rod guide bushing seal.

The cylinder can be equipped with a bushing drain port to allow excess fluid to be removed and returned to the tank.

The drain port is normally located on the side opposite the oil port and must be connected to an atmospheric pressure tank.



#### **METAL WIPER**

The metal wiper is particularly suitable for keeping extraneous particles, even small ones, outside the cylinder in the surrounding operating environment, thanks to the perfect adhesion between the scraper and the cylinder rod.

Recommended in environments with a high quantity of small dust particles.

#### HIGH SEALING AND LOW FRICTION PISTON FOR HEAD BALANCING CYLINDERS

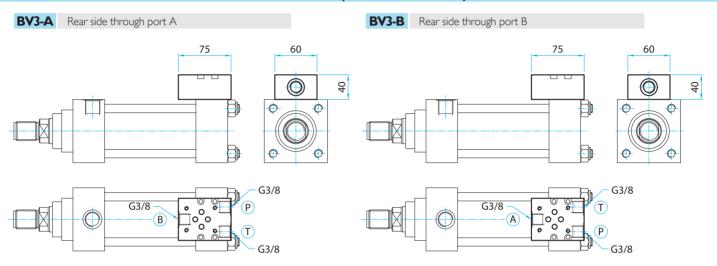
A special version of the piston is available for applications where high sealing and high free-flowing performance are required at the same time: e.g. load balancing cylinders, applications with closed circuits or with different fluids (oil/air), etc.

Please consult our technical department to verify the applicability of this solution.

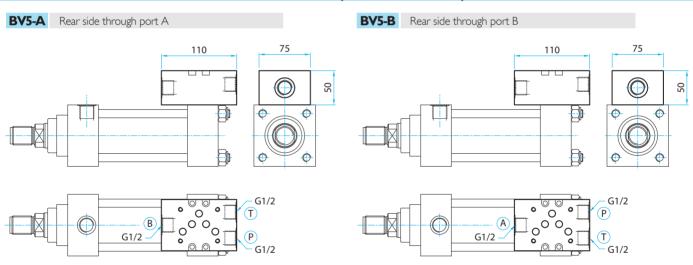
#### **PISTON FOR HEAVY DUTY APPLICATIONS**

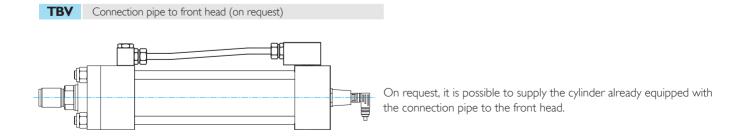
A special version of the piston is available for heavy duty applications, where shocks and impulsive forces cannot be avoided in any way and their damaging effects on cylinder life must be limited.

In these cases we recommend the use of this piston in combination with a hardened and tempered steel piston rod. Please consult our technical department to verify the applicability of this solution.




## **CETOP PLATES FOR ISO 4401 VALVES**


CETOP plates with ISO 4401 mounting surfaces allow fixing a four-way control valves to reduce oil volumes between the cylinder and the valve, achieving better control accuracy.


They are mounted directly on the rear head of the cylinder by means of a nipple and four screws, which ensure stable attachment even in the case of continuous vibrations. They are often chosen in combination with the use of position transducers for absolute and precise detection of the rod. On request, the cylinder can be supplied with the connection tube to the front end fitted.

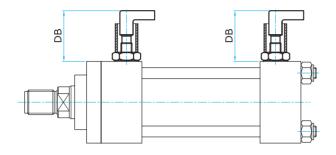
## CETOP 3 PLATES FOR ISO 4401-03 NG6 VALVES (for bores 40 to 125)



## CETOP 5 PLATES FOR ISO 4401-05 NG10 VALVES (for bores 50 to 200)







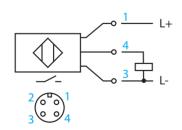

# TIE-ROD HYDRAULIC CYLINDERS WITH PROXIMITY SWITCHES

The CD and DK series cylinders can be equipped with proximity switches integrated in the cylinder heads, for detecting the position of the piston at the end of the stroke, on one or both sides. The switch generates a magnetic field and it is able to detect the change resulting from the approaching of the cushioning bushing.

The switches are mounted on the cylinder head, usually in position 4, and are protected from accidental impact by a solid steel cover (see page 16).

For reasons of space, the application of switches is not possible for bores 25 and 32.




| Bore | DB max (mm) |
|------|-------------|
| 40   | 85          |
| 50   | 80          |
| 63   | 80          |
| 80   | 70          |
| 100  | 60          |
| 125  | 65          |
| 160  | 55          |
| 200  | 50          |

| SPV | Front side switch option            |
|-----|-------------------------------------|
| SPZ | Rear side switch option             |
| SPK | Front and rear side switches option |

The switches are made of stainless steel and are supplied correctly mounted in the cylinder and tested before delivery.

The switch is supplied with a 5 meter PUR cable with M12 connector.

The output signal is regulated by a 'normally open' contact.



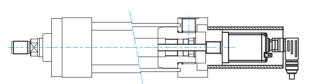
| Switch technical features |                |  |  |
|---------------------------|----------------|--|--|
| Operating temperature     | -25°C / +120°C |  |  |
| Maximum pressure          | 500 bar        |  |  |
| Protection grade          | IP69k          |  |  |
| Connector                 | S4             |  |  |
| Hysteresis                | <= 15%         |  |  |
| Repeatability             | <= 5%          |  |  |
| Wiring                    | 3 wires        |  |  |
| Switching function        | Normally open  |  |  |
| Output signal             | PNP            |  |  |
| Rated operational voltage | 24 V DC        |  |  |
| Rated operational current | 200 mA         |  |  |
| Supply voltage            | 10 / 36 V DC   |  |  |



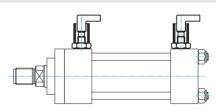
## TIE-RODS CYLINDERS WITH NICKEL-PLATING TREATMENT

Nickel-plated hydraulic cylinders with chrome-plated stainless-steel rod, according to ISO 6020/2.

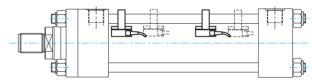
Suitable for use in aggressive environments, in contact with substances that promote corrosion, as an alternative to cylinders made entirely of stainless steel. Available in a variety of mountings including ME5, ME6, MS2 and, MP5, in all seals configurations and selectable options for all CD/DK/MD series tie-rods cylinders (see from page 7) depending on desired operating conditions and performance. All cylinders are tested before delivery in accordance with ISO 10100.


**NK** Nickel-plated cylinder option




| Nickel-plating performances                      |                                    |  |  |
|--------------------------------------------------|------------------------------------|--|--|
| Nickel thickness                                 | 20µm                               |  |  |
| Corrosion resistance                             | 1200 hours in salt spray rating 10 |  |  |
| High adhesion and uniformity of the nickel layer |                                    |  |  |
| Low environmental impact                         |                                    |  |  |
| No heavy metals and ammonia                      |                                    |  |  |




CD - DK series standard tie-rods hydraulic cylinder.



TD - TK series servocylinder with position transducer for precise and continuous detection of the piston position.



Cylinder with switches integrated in the heads, for end-of-stroke detection piston stroke.



Switches attached to cylinder rods, with stainless steel tube and magnetic piston for detection at various positions along the stroke.

#### **AVAILABLE MOUNTINGS**



A - ISO ME5 FRONT FLANGE



**B** - ISO ME6 REAR FLANGE



**D** - ISO MP5 BALL JOINTED EYE



E - ISO MS2



R - ISO MX3 FRONT EXTENDED TIE-RODS



Q - ISO MX1 FRONT AND REAR EXTENDED TIE-RODS



S - ISO MX2 REAR EXTENDED TIE-RODS

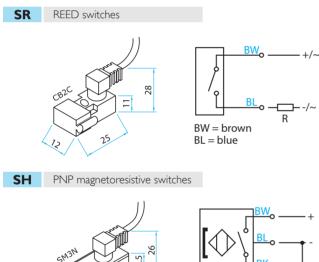


#### **TIE-RODS CYLINDERS WITH MAGNETIC SWITCHES**



The MD series hydraulic cylinders have the same technical features, dimensions and available options as the basic CD and DK series, but are equipped with a magnetic piston and stainless-steel tube. One or more magnetic switches fixed to the tie-rods can be positioned along the tube to detect the passage of the piston near the SR or SH switch. Special programmable sensors are available on request.

Voltage and current values must never exceed the values given in the table.


Current peaks can be caused by capacitive charges (e.g. cables longer than 3 m).

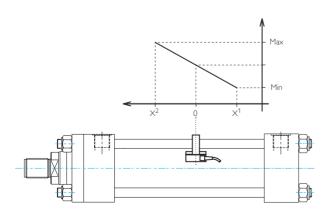
Voltage peaks can be caused by inductances (e.g. relays, solenoid valves, contactors, etc.).

Magnetic distortions can be caused by ferrous masses (e.g. cylinder seats inside moulds) or by the presence of strong magnetic fields (e.g. electric motors, coils, inverters, etc.).

For space reasons of the switch components, check that the cylinder stroke is longer than a minimum value (see page 8). False contacts can occur in the presence of strong vibrations.

The SR and SH type switches are able to detect the passage of the magnetic piston underneath them, closing the electrical circuit. They are fastened to the tie-rods using the STA/STB/STC/STD brackets.




| Voltage               | 3-110 V AC/DC                |
|-----------------------|------------------------------|
| Max current (at 25°C) | 0.3 A                        |
| Switch on time        | 0.5 ms                       |
| Switch off time       | 0.5 ms                       |
| Electric life         | 10 <sup>7</sup> pulse        |
| Protecting rating     | IP 67 EN60529                |
| Operating temperature | -10 / +70 °C                 |
| Visual signal         | LED                          |
| Cable                 | $2 \times 0.25 \text{ mm}^2$ |
| Cable lenght          | 5 m                          |

6-30 V DC 0.25 A 0.5 ms 0.5 ms 10<sup>7</sup> pulse IP 67 EN60529 -10 / +70 °C

LED  $3 \times 0.25 \text{ mm}^2$  5 m

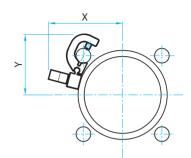
|                         | Voltage               |  |
|-------------------------|-----------------------|--|
| BW <sub>2</sub>         | Max current (at 25°C) |  |
|                         | Switch on time        |  |
| \\ BL_0                 | Switch off time       |  |
|                         | Electric life         |  |
| BK <sub>o</sub> - R     | Protecting rating     |  |
|                         | Operating temperature |  |
| BW = brown              | Visual signal         |  |
| BL = blue<br>BK = black | Cable                 |  |
| DIX - DIACK             | Cable lenght          |  |

## **TIE-RODS CYLINDERS WITH SPECIAL SENSORS**



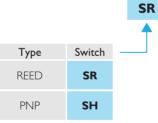
On request, by contacting our technical department, special sensors are available that can detect the piston within a programmable range, continuously providing its position via a digital output signal.

It is also possible to programme the closing of the circuit in two intervals within the reading range, which can also be modified via software on board the machine. The digital connection allows the sensors to send several operating parameters, such as the working temperature.


They are attached to the tie-rods by means of special brackets.



# **TIE-RODS CYLINDERS WITH MAGNETIC SWITCHES**

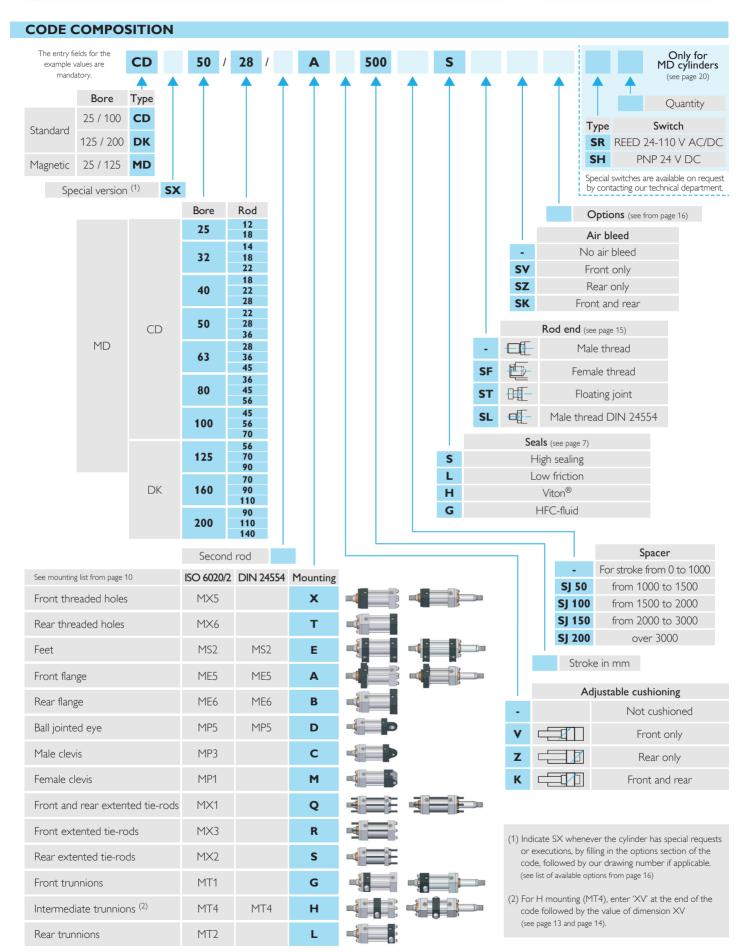

Brackets for mounting SR and SH type switches.

| Bore | X  | Υ  |     | Bracket |       |
|------|----|----|-----|---------|-------|
| 25   | 43 | 26 |     |         | 4     |
| 32   | 45 | 28 | STA |         | 25    |
| 40   | 50 | 32 |     | 12      | 22    |
| 50   | 56 | 44 | STB |         | 6     |
| 63   | 61 | 50 | 315 | 14      | 12 34 |
| 80   | 71 | 57 | STC | 0       | 98    |
| 100  | 78 | 64 | 3.0 | 14      | 19 49 |
| 125  | 95 | 80 | STD | 14      | 21.5  |



# **SWITCHES ORDERING CODE COMPOSITION**

Switch + mounting bracket.
Can also be ordered separately.




Special sensors are available on request by contacting our technical department.

| <b></b> |         |              |
|---------|---------|--------------|
|         | Bracket | Bore         |
|         | STA     | 25 - 32 - 40 |
|         | STB     | 50 - 63      |
|         | STC     | 80 - 100     |
|         | STD     | 125          |

STA





Interactive online coding wizard available at www.confortinet.com